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Dynamic graph representation problem:

Given a representation R(G ) of a graph G and a edge or vertex
modification of G (insertion or deletion) update the representation
R(G ).
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Dynamic graph representation problem:

Given a representation R(G ) of a graph G and a edge or vertex
modification of G (insertion or deletion) update the representation
R(G ).

When restricted to a certain graph family F , the algorithm should:

1 check whether the modified graph still belongs to F ;

2 if so, udpate the representation;

3 otherwise output a certificate (e.g. a forbidden subgraph).
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Dynamic graph representation problem:

Given a representation R(G ) of a graph G and a edge or vertex
modification of G (insertion or deletion) update the representation
R(G ).

When restricted to a certain graph family F , the algorithm should:

1 check whether the modified graph still belongs to F ;

2 if so, udpate the representation;

3 otherwise output a certificate (e.g. a forbidden subgraph).

Some keys of the problem

Need of a canonical representation (decomposition techniques...)
and need of an incremental (dynamic) characterization.
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Some known results

vertex modification edge modification

proper intervals O(d + log n) [HSS02] O(1) [HSS02]

cographs O(d) [CoPeSt85] O(1) [SS04]

permutations O(n) [CrPa05] O(n) [CrPa05]

distance hereditary O(d) [GPa07] O(1) [CoT07]

intervals O(n) [Cr07] O(n) [Cr07]

HSS = Hell, Shamir, Sharan
CoPeSt = Corneil, Perl, Stewart
SS = Shamir, Sharan
CrPa= Crespelle, Paul
GPa = Gioan, Paul
CoT = Corneil, Tedder
Cr = Crespelle

E. Gioan Dynamic Distance Hereditary Graphs using Split Decomposition



Revisiting split decomposition
Vertex modification of DH graphs

Relations with other works

1 Revisiting split decomposition

2 Vertex modification of DH graphs

3 Relations with other works

E. Gioan Dynamic Distance Hereditary Graphs using Split Decomposition



Revisiting split decomposition
Vertex modification of DH graphs

Relations with other works

Graph labelled tree

A graph-labelled tree is a pair (T ,F) with T a tree and F a set of
graphs such that:

each (internal) node v of degree k of T is labelled by a graph
Gv ∈ F on k vertices

there is a bijection ρv from the tree-edges incident to v to the
vertices of Gv
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Given a graph labelled tree (T ,F), the accessibility graph
GS(T ,F) has the leaves of T as vertices and

xy ∈ E (GS(T ,F)) if and only if ρv (uv)ρv (vw) ∈ E (Gv ),
∀ tree-edges uv , vw on the x , y -path in T
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Split

A split is a bipartition (A,B) of the vertices of a graph G = (V ,E )
such that

|A| > 2, |B | > 2;

for x ∈ A and y ∈ B , xy ∈ E iff x ∈ N(B) and y ∈ N(A).
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Split

A split is a bipartition (A,B) of the vertices of a graph G = (V ,E )
such that

|A| > 2, |B | > 2;

for x ∈ A and y ∈ B , xy ∈ E iff x ∈ N(B) and y ∈ N(A).
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A graph is prime if it has no split.
The stars and cliques are called degenerate.

K4 K3

clique-join

clique-split

K5

S 4 S 3

star-join

star-split

S 5
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Split decomposition [Cunningham’82 reformulated]

For any connected graph G , there exists a unique graph-labelled
tree (T ,F) with a minimun number of nodes such that

1 G = GS(T ,F),

2 any graph of F is prime or degenerate for the split
decomposition.

→ We note (T ,F) = ST (G ) the split tree of G
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Distance hereditary graph

A graph is distance hereditary if and only if it is totally
decomposable for the split decomposition, i.e. its split tree is
labelled by cliques and stars.
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An intersection model for DH graphs [Gioan and Paul ’07]

The accessibility set of a leaf a in a clique-star labelled tree is the
set of paths (a, b) with b a leaf accessible from a.

A distance hereditary graph is the intersection graph of a family of
accessibility sets of leaves in a set of clique-star labelled trees.

answers a question by Spinrad
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Particular case of cographs

The cographs form the particular case where the centers of all stars
are directed towards a root of the split tree.

1 = clique
0 = stable

1 = clique
(except root)

0 = star
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Modules

A subset of vertices M of a graph G = (V ,E ) is a module iff
∀x ∈ V \M, either M ⊆ N(x) or M ∩ N(x) = ∅
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Split decomposition

Degenerate graphs

cliques and stars

Totally decomposable graphs

Distance hereditary grahs

Unrooted tree decomposition

[Cunningham 82]
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Rooted tree decomposition

[Gallai 67]
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Theorem (Gioan and Paul 07)

Let G = (V ,E ) be a distance hereditary (DH) graph. It can be
tested in

O(|S |) whether G + (x ,S), with x /∈ E and N(x) = S, is a
DH graph;

O(|S |) whether G − x, with S = N(x), is a DH graph;
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Let (T ,F) be a graph-labelled tree, and S be a subset of leaves of
T . A node u of T (S) is:

fully-accessible by S if any subtree of T − u contains a leaf
of S ;
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Let (T ,F) be a graph-labelled tree, and S be a subset of leaves of
T . A node u of T (S) is:

fully-accessible by S if any subtree of T − u contains a leaf
of S ;

singly-accessible by S if it is a star-node and exactly two
subtrees of T − u contain a leaf l ∈ S among which the
subtree containing the neighbor v of u such that ρu(uv) is the
centre of Gu;

1

2

3 4

5

6
7

E. Gioan Dynamic Distance Hereditary Graphs using Split Decomposition



Revisiting split decomposition
Vertex modification of DH graphs

Relations with other works

Let (T ,F) be a graph-labelled tree, and S be a subset of leaves of
T . A node u of T (S) is:

fully-accessible by S if any subtree of T − u contains a leaf
of S ;

singly-accessible by S if it is a star-node and exactly two
subtrees of T − u contain a leaf l ∈ S among which the
subtree containing the neighbor v of u such that ρu(uv) is the
centre of Gu;

partially-accessible otherwise

1

2

3 4

5

6
7

E. Gioan Dynamic Distance Hereditary Graphs using Split Decomposition



Revisiting split decomposition
Vertex modification of DH graphs

Relations with other works

Theorem (DH incremental characterization [Gioan, Paul ’07] )

Let G be a connected DH graph and ST (G ) = (T ,F) be its split
tree. Then G + (x ,S) is a DH graph if and only if:

1 At most one node of T (S) is partially-accessible.
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Theorem (DH incremental characterization [Gioan, Paul ’07] )

Let G be a connected DH graph and ST (G ) = (T ,F) be its split
tree. Then G + (x ,S) is a DH graph if and only if:

1 At most one node of T (S) is partially-accessible.

2 Any clique node of T (S) is either fully or partially-accessible.
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Theorem (DH incremental characterization [Gioan, Paul ’07] )

Let G be a connected DH graph and ST (G ) = (T ,F) be its split
tree. Then G + (x ,S) is a DH graph if and only if:

1 At most one node of T (S) is partially-accessible.

2 Any clique node of T (S) is either fully or partially-accessible.

3 If there exists a partially-accessible node u, then any star node
v 6= u of T (S) is oriented towards u if and only if it is
fully-accessible.
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Theorem (DH incremental characterization [Gioan, Paul ’07] )

Let G be a connected DH graph and ST (G ) = (T ,F) be its split
tree. Then G + (x ,S) is a DH graph if and only if:

1 At most one node of T (S) is partially-accessible.

2 Any clique node of T (S) is either fully or partially-accessible.

3 If there exists a partially-accessible node u, then any star node
v 6= u of T (S) is oriented towards u if and only if it is
fully-accessible.

4 Otherwise, there exists a tree-edge e of T (S) towards which
any star node of T (S) is oriented if and only if it is
fully-accessible.
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The insertion fails: the two singly-accessible nodes are oriented
towards the partially-accessible node !
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The insertion succeeds: in GS(T ,F), we have N(x) = S
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Insertion algorithm

1 Extract T (S) (require an arbitrary orientation of ST (G ));
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Insertion algorithm

1 Extract T (S) (require an arbitrary orientation of ST (G ));

2 Check the accessibility-type of the nodes and look for an
insertion node or edge;
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Insertion algorithm

1 Extract T (S) (require an arbitrary orientation of ST (G ));

2 Check the accessibility-type of the nodes and look for an
insertion node or edge;

3 Insert the node by either subdividing the insertion edge, or
splitting the insertion node, or attaching x to the insertion
node.
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Insertion algorithm

1 Extract T (S) (require an arbitrary orientation of ST (G ));

2 Check the accessibility-type of the nodes and look for an
insertion node or edge;

3 Insert the node by either subdividing the insertion edge, or
splitting the insertion node, or attaching x to the insertion
node.

Complexity

1 O(| N(x) |) dynamic recognition
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Insertion algorithm

1 Extract T (S) (require an arbitrary orientation of ST (G ));

2 Check the accessibility-type of the nodes and look for an
insertion node or edge;

3 Insert the node by either subdividing the insertion edge, or
splitting the insertion node, or attaching x to the insertion
node.

Complexity

1 O(| N(x) |) dynamic recognition

2 linear time static recognition
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1 Revisiting split decomposition

2 Vertex modification of DH graphs
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Edge modification of DH graphs

Theorem (Corneil and Tedder 06)

Let G = (V ,E ) be a distance hereditary (DH) graph. It can be
tested in

O(1) whether G + e, with e /∈ E, is a DH graph;

O(1) whether G − e, with e ∈ E, is a DH graph.

E. Gioan Dynamic Distance Hereditary Graphs using Split Decomposition



Revisiting split decomposition
Vertex modification of DH graphs

Relations with other works

Edge modification of DH graphs

Another approach for this result [GP 07]

A simple algorithm for this result is given by graph-labelled trees:
consider the word between the two leaves x and y where e = xy
with K a clique, L resp. R a star with center towards x resp. y ,
and S otherwise.

edge insertion −→
←− edge deletion

(R)SS(L) (R)LR(L)
(R)SK (L) (R)LK (L)
(R)KS(L) (R)KR(L)
(R)S(L) (R)K (L)
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Vertex modification of cographs

Theorem (Corneil, Pearl and Stewart ’85)

Let G = (V ,E ) be a cograph. It can be tested in

O(|S |) whether G + (x ,S), with x /∈ E and N(x) = S, is a
cograph

O(|S |) whether G − x, with S = N(x), is a cograph
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Vertex modification of cographs

Theorem (Cograph incremental characterization [CPS’85] )

Let G be a cograph and MD(G ) = (T ,F) be its modular decomposition
tree. Then G + (x , S) is a cograph if and only if:

1 At most one node of T (S) is partially-accessible.

2 Any series node of T (S) is either fully or partially-accessible.

3 If a partially-accessible node u exists, then a parallel node v 6= u of
T (S) is a descendant of u if and only if it is fully-accessible.

4 Otherwise, a tree-edge e = uw of T (S) exists such that a parallel
node v 6= u of T (S) is a descendant of u if and only if it is
fully-accessible.

Another approach for this result [GP 07]

This result is equivalent to test the insertion/deletion in DH graphs, with
the supplementary condition that the split tree is rooted.
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Edge modification of cographs

Theorem (Sharan and Shamir ’04)

Let G = (V ,E ) be a cograph. It can be tested in

O(1) whether G + e, with e /∈ E, is a cograph

O(1) whether G − e, with e ∈ E, is a cograph

Another approach for this result [GP 07]

This result is equivalent to test the insertion/deletion in DH graphs, with
the supplementary condition that the split tree is rooted.
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THANKS!
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