Dynamic Distance Hereditary Graphs using Split Decomposition

Emeric Gioan

CNRS - LIRMM - Université Montpellier II, France

December 17, 2007

Joint work with C. Paul (CNRS - LIRMM)

(日) (同) (日) (日)

Dynamic graph representation problem:

Given a representation R(G) of a graph G and a edge or vertex modification of G (insertion or deletion) update the representation R(G).

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

3

Dynamic graph representation problem:

Given a representation R(G) of a graph G and a edge or vertex modification of G (insertion or deletion) update the representation R(G).

When restricted to a certain graph family \mathcal{F} , the algorithm should:

- **(**) check whether the modified graph still belongs to \mathcal{F} ;
- if so, udpate the representation;
- otherwise output a certificate (e.g. a forbidden subgraph).

(ロ) (同) (E) (E) (E)

Dynamic graph representation problem:

Given a representation R(G) of a graph G and a edge or vertex modification of G (insertion or deletion) update the representation R(G).

When restricted to a certain graph family \mathcal{F} , the algorithm should:

- **(**) check whether the modified graph still belongs to \mathcal{F} ;
- if so, udpate the representation;
- otherwise output a certificate (e.g. a forbidden subgraph).

Some keys of the problem

Need of a canonical representation (decomposition techniques...) and need of an incremental (dynamic) characterization.

・ロト ・回ト ・ヨト ・ヨト

3

Some known results

	vertex modification	edge modification
proper intervals	$O(d + \log n)$ [HSS02]	O(1) [HSS02]
cographs	O(d) [CoPeSt85]	O(1) [SS04]
permutations	<i>O</i> (<i>n</i>) [CrPa05]	O(n) [CrPa05]
distance hereditary	O(d) [GPa07]	O(1) [CoT07]
intervals	<i>O</i> (<i>n</i>) [Cr07]	<i>O</i> (<i>n</i>) [Cr07]

HSS = Hell, Shamir, Sharan CoPeSt = Corneil, Perl, Stewart SS = Shamir, Sharan CrPa= Crespelle, Paul GPa = Gioan, Paul CoT = Corneil, Tedder Cr = Crespelle

2 Vertex modification of DH graphs

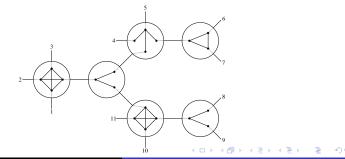
Relations with other works

伺下 イヨト イヨト

Graph labelled tree

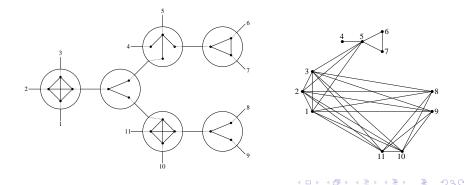
A graph-labelled tree is a pair (T, \mathcal{F}) with T a tree and \mathcal{F} a set of graphs such that:

- each (internal) node v of degree k of T is labelled by a graph $G_v \in \mathcal{F}$ on k vertices
- there is a bijection ρ_v from the tree-edges incident to v to the vertices of G_v



Given a graph labelled tree (T, \mathcal{F}) , the *accessibility graph* $G_S(T, \mathcal{F})$ has the leaves of T as vertices and

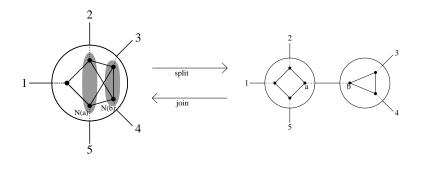
• $xy \in E(G_S(T, \mathcal{F}))$ if and only if $\rho_v(uv)\rho_v(vw) \in E(G_v)$, \forall tree-edges uv, vw on the x, y-path in T



Split

A *split* is a bipartition (A, B) of the vertices of a graph G = (V, E) such that

- $|A| \ge 2$, $|B| \ge 2$;
- for $x \in A$ and $y \in B$, $xy \in E$ iff $x \in N(B)$ and $y \in N(A)$.



イロト イヨト イヨト イヨト

Split

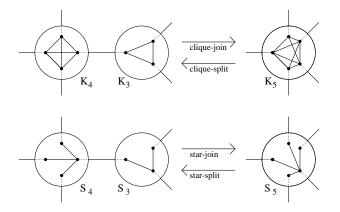
A *split* is a bipartition (A, B) of the vertices of a graph G = (V, E) such that

- $|A| \ge 2$, $|B| \ge 2$;
- for $x \in A$ and $y \in B$, $xy \in E$ iff $x \in N(B)$ and $y \in N(A)$.



イロン イヨン イヨン イヨン

A graph is *prime* if it has no split. The stars and cliques are called *degenerate*.



イロン イヨン イヨン イヨン

Split decomposition [Cunningham'82 reformulated]

For any connected graph G, there exists a unique graph-labelled tree (T, \mathcal{F}) with a minimun number of nodes such that

$$G = G_S(T, \mathcal{F}),$$

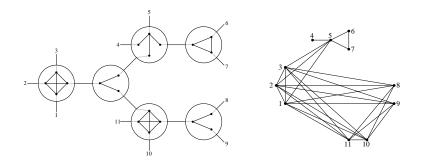
any graph of *F* is prime or degenerate for the split decomposition.

 \rightarrow We note $(T, \mathcal{F}) = ST(G)$ the *split tree* of G

(ロ) (同) (E) (E) (E)

Distance hereditary graph

A graph is *distance hereditary* if and only if it is totally decomposable for the split decomposition, i.e. its split tree is labelled by cliques and stars.



イロト イヨト イヨト イヨト

An intersection model for DH graphs [Gioan and Paul '07]

The *accessibility set* of a leaf a in a clique-star labelled tree is the set of paths (a, b) with b a leaf accessible from a.

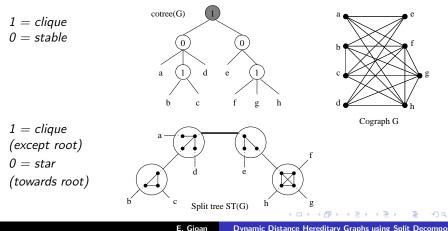
A distance hereditary graph is the intersection graph of a family of accessibility sets of leaves in a set of clique-star labelled trees.

answers a question by Spinrad

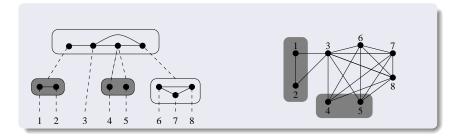
イロト イポト イヨト イヨト

Particular case of cographs

The cographs form the particular case where the centers of all stars are directed towards a **root** of the split tree.



Dynamic Distance Hereditary Graphs using Split Decomposition



Modules

A subset of vertices M of a graph G = (V, E) is a **module** iff $\forall x \in V \setminus M$, either $M \subseteq N(x)$ or $M \cap N(x) = \emptyset$

(ロ) (同) (E) (E) (E)

Split decomposition

Degenerate graphs

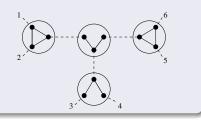
cliques and stars

Totally decomposable graphs

• Distance hereditary grahs

Unrooted tree decomposition

• [Cunningham 82]



Modular decomposition

Degenerate graphs

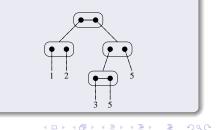
cliques and stables

Totally decomposable graphs

Cographs

Rooted tree decomposition

• [Gallai 67]



2 Vertex modification of DH graphs

Relations with other works

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Gioan and Paul 07)

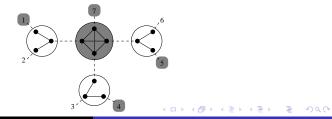
Let G = (V, E) be a distance hereditary (DH) graph. It can be tested in

- O(|S|) whether G + (x, S), with $x \notin E$ and N(x) = S, is a DH graph;
- O(|S|) whether G x, with S = N(x), is a DH graph;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

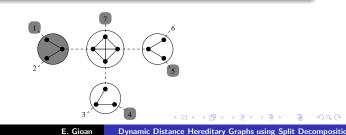
Let (T, \mathcal{F}) be a graph-labelled tree, and S be a subset of leaves of T. A node u of T(S) is:

fully-accessible by S if any subtree of T − u contains a leaf of S;



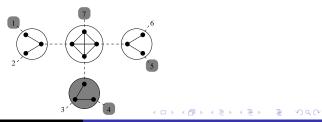
Let (T, \mathcal{F}) be a graph-labelled tree, and S be a subset of leaves of T. A node u of T(S) is:

- fully-accessible by S if any subtree of T − u contains a leaf of S;
- singly-accessible by S if it is a star-node and exactly two subtrees of T - u contain a leaf $l \in S$ among which the subtree containing the neighbor v of u such that $\rho_u(uv)$ is the centre of G_u ;



Let (T, \mathcal{F}) be a graph-labelled tree, and S be a subset of leaves of T. A node u of T(S) is:

- **fully-accessible** by S if any subtree of T − u contains a leaf of S;
- singly-accessible by S if it is a star-node and exactly two subtrees of T - u contain a leaf $l \in S$ among which the subtree containing the neighbor v of u such that $\rho_u(uv)$ is the centre of G_u ;
- partially-accessible otherwise



Let G be a connected DH graph and $ST(G) = (T, \mathcal{F})$ be its split tree. Then G + (x, S) is a DH graph if and only if:

• At most one node of T(S) is partially-accessible.

イロト イポト イヨト イヨト

Let G be a connected DH graph and $ST(G) = (T, \mathcal{F})$ be its split tree. Then G + (x, S) is a DH graph if and only if:

- At most one node of T(S) is partially-accessible.
- 2 Any clique node of T(S) is either fully or partially-accessible.

イロト イポト イヨト イヨト

Let G be a connected DH graph and $ST(G) = (T, \mathcal{F})$ be its split tree. Then G + (x, S) is a DH graph if and only if:

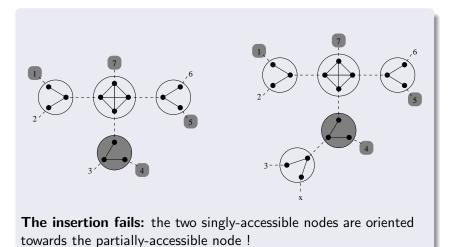
- At most one node of T(S) is partially-accessible.
- 2 Any clique node of T(S) is either fully or partially-accessible.
- If there exists a partially-accessible node u, then any star node v ≠ u of T(S) is oriented towards u if and only if it is fully-accessible.

イロト イポト イヨト イヨト 二日

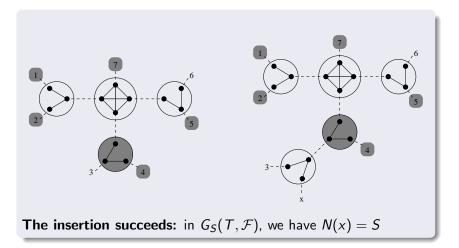
Let G be a connected DH graph and $ST(G) = (T, \mathcal{F})$ be its split tree. Then G + (x, S) is a DH graph if and only if:

- At most one node of T(S) is partially-accessible.
- 2 Any clique node of T(S) is either fully or partially-accessible.
- If there exists a partially-accessible node u, then any star node v ≠ u of T(S) is oriented towards u if and only if it is fully-accessible.
- Otherwise, there exists a tree-edge e of T(S) towards which any star node of T(S) is oriented if and only if it is fully-accessible.

イロト イポト イヨト イヨト 三日



イロト イヨト イヨト イヨト



・ロン ・回と ・ヨン ・ヨン

2

Insertion algorithm

• Extract T(S) (require an arbitrary orientation of ST(G));

イロン 不同と 不同と 不同と

æ

- Sector T(S) (require an arbitrary orientation of ST(G));
- Check the accessibility-type of the nodes and look for an insertion node or edge;

イロト イヨト イヨト イヨト

- Sector T(S) (require an arbitrary orientation of ST(G));
- Check the accessibility-type of the nodes and look for an insertion node or edge;
- Insert the node by either subdividing the insertion edge, or splitting the insertion node, or attaching x to the insertion node.

(ロ) (同) (E) (E) (E)

- Sector T(S) (require an arbitrary orientation of ST(G));
- Check the accessibility-type of the nodes and look for an insertion node or edge;
- Insert the node by either subdividing the insertion edge, or splitting the insertion node, or attaching x to the insertion node.

Complexity

• O(|N(x)|) dynamic recognition

- Sector T(S) (require an arbitrary orientation of ST(G));
- Check the accessibility-type of the nodes and look for an insertion node or edge;
- Insert the node by either subdividing the insertion edge, or splitting the insertion node, or attaching x to the insertion node.

Complexity

- O(|N(x)|) dynamic recognition
- Iinear time static recognition

2 Vertex modification of DH graphs

Relations with other works

(4 同) (4 回) (4 回)

Edge modification of DH graphs

Theorem (Corneil and Tedder 06)

Let G = (V, E) be a distance hereditary (DH) graph. It can be tested in

- O(1) whether G + e, with $e \notin E$, is a DH graph;
- O(1) whether G e, with $e \in E$, is a DH graph.

(ロ) (同) (E) (E) (E)

Edge modification of DH graphs

Another approach for this result [GP 07]

A simple algorithm for this result is given by graph-labelled trees: consider the word between the two leaves x and y where e = xy with K a clique, L resp. R a star with center towards x resp. y, and S otherwise.

edge insertion \longrightarrow		
\longleftarrow edge deletion		
(R)SS(L)	(R)LR(L)	
(R)SK(L)	(R)LK(L)	
(R)KS(L)	(R)KR(L)	
(R)S(L)	(R)K(L)	

イロン イ部ン イヨン イヨン 三日

Vertex modification of cographs

Theorem (Corneil, Pearl and Stewart '85)

Let G = (V, E) be a cograph. It can be tested in

- O(|S|) whether G + (x, S), with $x \notin E$ and N(x) = S, is a cograph
- O(|S|) whether G x, with S = N(x), is a cograph

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Vertex modification of cographs

Theorem (Cograph incremental characterization [CPS'85])

Let G be a cograph and $MD(G) = (T, \mathcal{F})$ be its modular decomposition tree. Then G + (x, S) is a cograph if and only if:

- At most one node of T(S) is partially-accessible.
- 2 Any series node of T(S) is either fully or partially-accessible.
- If a partially-accessible node u exists, then a parallel node v ≠ u of T(S) is a descendant of u if and only if it is fully-accessible.
- Otherwise, a tree-edge e = uw of T(S) exists such that a parallel node v ≠ u of T(S) is a descendant of u if and only if it is fully-accessible.

Another approach for this result [GP 07]

This result is equivalent to test the insertion/deletion in DH graphs, with the supplementary condition that the split tree is rooted.

Edge modification of cographs

Theorem (Sharan and Shamir '04)

Let G = (V, E) be a cograph. It can be tested in

- O(1) whether G + e, with $e \notin E$, is a cograph
- O(1) whether G e, with $e \in E$, is a cograph

Another approach for this result [GP 07]

This result is equivalent to test the insertion/deletion in DH graphs, with the supplementary condition that the split tree is rooted.

THANKS!

æ